Thursday, June 6, 2019

The Force Increases, As Will The Acceleration Essay Example for Free

The Force Increases, As Will The speedup EssayPredictionIn this experiment, I predict that as the force increases, as will the acceleration. Therefore, as the force decreases the acceleration decreases. I posterior in like manner predict that the force and acceleration of an objective lens are instantly proportional, meaning that if the force was to be doubled, then the acceleration would also double. I can predict this using Newtons second law of exploit.Newtons second Law of motionForce = Mass x Acceleration(N) (kg) m/s(variable) (measurement)In simple terms, this means that if the force is to increase then the acceleration must also increase because the fix multiplied by the acceleration must equal the force. The equation, like many others can be re-ar set offd in order to show a possible prediction for the value in m/s that the acceleration will be the subject of the equation.Acceleration = Force (Mass / 0.400kg)MassWeight is a force. Weight is quite oftenly confused wi th mass, however each one differs to the other. Mass is measured in kilograms (kg). The weight of an object only concerns the amount of matter an object is made up of. In contrast to the mass of an object, the weight of an object regards how much it is being pulled down to the centre of the earth through gravity. Weight is a force and is measured in Newtons (N).Diagram of apparatusThe experiment that was carried out occurs when a slider is pulled through two abstemious gates via a charge pulley upon a soft bed of zephyr to minimalise friction powered by a vacuum connected to the air track.When the rider breaks the beam produced from decrease-colored gate 1, a recording is began by a calculating machine linked up to both light gates. Once the rider cuts through the second light gate, then the timer on the computer steps automatic on the wholey as the light gates can relay a signal to the computer.A computer is used rather than the naked eye because the computer can be precise t o 2 decimal places (d.p). Once the slide has traveled through both light gates, it is moved around both light gates and the experiment is excerpted. The variable for this investigation is force, that is controlled through the weights used n the pulley. The weights are changed at five dismantle times, at each time a different weight is used. My variables are as follows0.02 N , 0.03 N , 0.07 N , 0.08 N , 0.12 N ( N = Newtons)The value I chose are all the smallest possible values that I am able to create.In relation to arctic, there are no specific safety issues that come to into play during this particular investigation, however behavior around the apparatus and the laboratory is always considered a safety issue.The factors that are necessary to maintain as constants throughout the experiment in order to keep a high degree of accuracy are* Straight light gates (equidistant 40cm apart)* Same showtime point of the rider ( 5cm before the initial light gate)* Mass of the rider (0.40 0kg)The light gates are required to be equidistant (40cm apart) and level in order to keep the test so hi-fi readings can be recorded.The mass of the rider must also be mentained at exactly 0.400 kg because a slight chance in the weight will cause a change in the acceleration of the rider can result in widespread and inconsistent results.It is also important to mention the starting point of the rider that must remain constant in order for the rider to pass through each light gate at the same speed during each repeat reading recorded.In addition to these points of accuracy, there are others, which make fitted relevance to the experiment.The level at which the air track is must be kept horizontal so that the rider has neither too longer, or too shorter acceleration value that is recorded due to the slider being a crystalisest or along the gradient of the air track. This can be simply modify by adjusting the track then leaving the rider without a weight and switch on the air track, if the rider remains stationary then the air track is horizontal.The experiment will be measured on 3 occasions for each variable, these repeat readings will be mediocred out into a maven figure to gain an accurate set of results.To prepare for the investigation, a preliminary test was carried out in order to discover which mass of the rider produced the close accurate results.To do this, the lightest mass of the rider was used with the lightest and heaviest weights (0.020N lightest) and (0.170N heaviest).The masses of the rider were the largest possible (0.400 kg) and the smallest possible ( 0.200kg).The results showed me that the lighter the mass of the rider, the wider the range of results that I recorded. In contrast, the heavier the mass of the rider was, the more reliable my results were because they provided the smallest range. This meant that I chose the heaviest possible weight of the rider possible, which was 0.400kg.Skill area O (Obtaining The Results)FORCE (N)MASS (KG)Acceleration ( m / s )Test 1Test 2Test 3Average0.020.4000.050.040.050.050.030.4000.070.080.070.070.070.4000.180.180.170.180.080.4000.190.190.210.200.120.4000.310.310.310.31Skill area E EvaluationMy results throughout my investigation, were very accurate. The spread of my repeat readings were very small, each reading for each strength of force were close together shown a high level of accuracy throughout the investigation. All my average points that I recorded are close to the best-fit line that I have drawn, which suggests that all my results have been accurately recorded and displayed in my analysis and obtaining evidence sections.The procedures to which I applied my investigation were suitable because I was able to produce an accurate set of results with relative ease.In my opinion, my evidence can support a sufficient conclusion that as that the force upon on object is directly proportional to its acceleration produced. My results were tested over a reasonable range and are considered accurate as they fit in with my initial theory and also they fit in with my initial predictions that I was able to produce.I was able to produce these predictions by re-arranging Newtons second law to show me what the acceleration of an object can b equal to in terms of its force and mass.(Old equation)Force = Mass x Acceleration(N) (kg) m/s(variable) (measurement)(New, Re-arranged equation)Acceleration = Force (mass / 0.400kg)MassI have a range of values for my force, I inputted each one of these values to gain predicted results.(When force = 0.02) 0.02 = 0.05 (Actual average = 0.05)0.400(When force = 0.03) 0.03 = 0.075 (Actual average = 0.07)0.400(When force = 0.07) 0.07 = 0.175 (Actual average = 0.08)0.400(When force = 0.08) 0.08 = 0.20 (Actual average = 0.20)0.400(When force = 0.12) 0.12 = 0.30 (Actual average = 0.31)0.400As the above figures display clearly, my results are all highly accurate and sufficiently support my prediction and theory.All that remains is to discuss how I can extend my investigation. The obvious point that springs to mind is to take in further results to obtain an exceptionally high level of accuracy. However, I can also look to change my variable from the force to the mass of the rider. I can do this by investigating the relationship between the mass and force on a rider to give me additional information.I can pile out these tests in the same manner as I have discussed for this particular investigation, but changing the variables used. I will use a range of variables that will aid me complete my investigation reaching sufficient conclusions.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.